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1 INTRODUCTION 
 

Reducing the influence of noise in seismic data is an essential task in geophysics. Since different 
variants of the Fourier transform play a particularly important role in seismic data analysis, various 
noise filtering techniques have been developed that can be used before and after the computation of a 
Fourier transform or its inverse. In the present paper, we will investigate one such filtering technique 
that was developed in Refs. (Dobróka et al. 2012,2017). This method was tested only on synthetic data 
until now. Here we present a report on the application of this method to real-world data obtained from 
the Mátra Gravitational and Geophysical Laboratory (MGGL) (Barnaföldi et al. 2017, 2016). The La-
boratory is located near Gyöngyösoroszi, 88 m below the surface in the cavern system of an unused 
ore mine. The aim of the MGGL is to measure and analyze the advantages of the underground installa-
tion of third generation gravitational wave detectors, in particular the Einstein Telescope (ET Science 
Team, 2011). As part of the Einstein Telescope design phase, ground motion studies are accomplished 
at various sites all around the world, see, e.g. (Beker et al. 2015), and such seismic studies are also the 
among the key goals of the MGGL. It should also be mentioned that beside seismic investigations, 
other specialized instruments have been also installed at the MGGL to measure infrasound, electro-
magnetic noise, and the variation of the cosmic muon flux. 
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ABSTRACT: 

We study a noise-filtered Fourier transform method that has until now only been tested on syn- 

thetic data. After a brief theoretical summary and a test of the method on synthetic data, we apply 

it also to real data obtained from the Mátra Gravitational and Geophysical Laboratory. We describe 

the difficulties in implementing the method and discuss the outlook for improved methods. 



The paper is structured in the following way. In Section 2, we briefly summarize the noise-filtered 
Fourier transform of Ref. (Dobróka et al. 2017). Section 3 is devoted to the analysis of the MGGL 
seismic data with this method, and this is followed by a brief summary and outlook in Section 4. 

2 DESCRIPTION OF THE NOISE-FILTERED FOURIER TRANSFORM METHOD 

 
In order to make the presentation self-contained, we present briefly the theoretical background of Fou-
rier transform method introduced in Refs. (Dobróka et al. 2012, 2017). The starting step is a discretiza-
tion of the frequency spectrum, 

U(ω) = ∑ Bn
M
n=1 ψn(ω)               (1) 

 
where we expanded U(ω) in terms of the basis functions ψn-s with Bn complex coefficients, taking into 
account only M number of unknown series expansion coefficients. From this we can get the time se-
ries by applying inverse Fourier transformation and denoting the kth discrete time sample with 𝑡𝑘 : 
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being the Jacobian matrix, i.e., the inverse Fourier transform of the basis functions. During the compu-

tation we estimate the Bn coefficients by solving equation (2). Choosing the ψn functions to be the 

Hermite polynomials times an exponential term 𝑒
−𝜔2

2    turns out to be useful as they are the eigenfunc-

tions of the Fourier transformation operator with eigenvalues 𝑖𝑛. Thus, our basis will be given by 
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where ℎ𝑛

(0)
(𝜔) is the nth Hermite polynomial and the denominator comes from the normalization in-

duced by the orthogonality condition of the 𝐻𝑛
(0)

 Hermite functions. (Note that the "(0)" upper index 
notation only denotes that these are the unscaled basic forms of the functions.) 

In order to be able to apply this to real problems, the functions need to be scaled by a factor α: 
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Then these are again normalized and orthogonal eigenfunctions of the Fourier transformation. Fur-
thermore, the well-known recursive formula for calculating the ℎ𝑛(𝜔, 𝛼) Hermite polynomials (now 
scaled with α) can be generalized as 
 

ℎ𝑛+1(𝜔, 𝛼) = 2𝜔𝛼ℎ𝑛(𝜔, 𝛼) − 2𝑛𝛼ℎ𝑛−1(𝜔, 𝛼)        (6) 
 

With this and the transformations 𝜔′ = √𝛼𝜔 and thus 𝑡′ =
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, the Jacobian 𝐺𝑘,𝑛 can be written as 
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Since these functions have eigenvalues 𝑖𝑛 , the corresponding equation reads 
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This is useful for us as we do not need to solve any integration to get the Jacobian. 

In our work, we regard the Fourier transform problem as a least squares inverse problem, which is 
the first method described in the source article (Dobróka et al. 2017). Once we calculated 𝐆 we can 
write up the following equation: 

𝐆𝑇𝐆�⃗⃗� = 𝐆𝑇 �⃗⃗� (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)             (9) 
This derives from taking the 𝐿2norm of the so-called deviation vector and search for its minimum: 
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Here we have conducted an inverse Fourier transform on Eq. (1) and inserted Eq. (3) into it 

since𝐺𝑘,𝑛 = ℱ−1[ψn(𝜔′)]. With this we obtained the calculated time series 𝑢𝑘
(𝑐𝑎𝑙𝑐)

= 𝑢𝑘
(𝑐𝑎𝑙𝑐)

(𝑡𝑘) which 

we then plugged into the last equation. 
Then we estimate the complex coefficient B n values by multiplying both sides with (𝐆𝑇𝐆)−1 from 
the left: 

�⃗⃗� = (𝐆𝑇𝐆)−1𝐆𝑇 �⃗⃗� (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)          (11) 
Using this vector, we can get the time series according to Eq. (2), which is simply the discretized in-
verse Fourier problem:  

 𝑢(calc)(𝑡𝑘) = ∑ 𝐵𝑛
𝑀
𝑛=1 𝐺𝑘,𝑛             (12) 

 

 

 

 
We have tested this algorithm at first on the following special artificial data series, which was also 
used in the source article (Dobróka et al. 2017), i.e., for the signal 

𝑢(𝑡) = 738.91 ⋅ 𝑡2 𝑒−20𝑡𝑠𝑖𝑛 (40𝜋 +
𝜋

4
)               (13) 

randomized with Gaussian noise with a standard deviation 𝜎 =  0.03. In Fig. 1 the noiseless signal is 
shown, while Fig. 2(a) and 2(b) depicts the noisy signal and the filtered signal, respectively. In this test 
simulation we have used 𝑀 =  100 dimensional basis and a scaling factor of 𝛼 =  0.004. The algo-
rithm seems to reduce high frequency noise by smoothing and it becomes stronger towards the sides of 
the window. The distance in 𝐿2-norm between the filtered signal and the noiseless signal has de-
creased compared to that between the noisy and the noiseless signal, showing the effectiveness of the 
method. In the following numerical calculations, we will keep this α value and change the dimension 
of our basis of Hermite functions. 

 

FIG. 2:(a) Noisy data �⃗� (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑). 

FIG. 1: Input signal data without noise according to Eq. (13). 

FIG. 2:(b) Filtered data �⃗� (𝑐𝑎𝑙𝑐). 

FIG. 2: Synthetic test data with Gaussian noise and the filtered data after applying the algorithm. 



3 APPLICATION ON REAL SEISMIC DATA 

 
 
After the synthetic test examples, we move on to apply the method to real data. The data to be used 

was obtained at underground facility of the MGGL by a Guralp CMG-3T seismometer, where three 
independent sensor mass position outputs are recorded with the counting-number data rescaled to mil-
livolts (mV). An example of a time series obtained in this way (on 2017 June 26) is shown on Fig. 3. 

 
 
This time series data on Fig. 3 has been detrended and then highpassed in order to get rid of the low 

frequency noise components. We have cut out shorter chunks in the neighborhood of large peaks and 
performed the filtering. Figs. 4-11 show the input and output data for different number of basis func-
tions (M). Our program code applies the described filtering method, using equations (11) and (12) for 
determining �⃗� (𝑐𝑎𝑙𝑐).  

 

 
 
We can learn a number of lessons from these tests. If within the selected time window a sharp peak 

is contained near the ends, where the difference between two neighboring data points is large, the filter 
can ruin it by significantly reducing its size as it tries to make it smoother. It can be seen that there are 
three large peaks, two of which are sharp and one less sharp. After the filtering the size of the sharper 
peaks reduces critically and only the third peak survives. The algorithm also seems to filter out high 
frequency oscillations and dampen the sharpness of the peaks. The damping is the strongest if we use 

FIG. 4: Noisy data �⃗� (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑). 

FIG. 7: Filtered data �⃗� (𝑐𝑎𝑙𝑐), M = 140. FIG. 6: Filtered data �⃗� (𝑐𝑎𝑙𝑐), M = 120. 

FIG. 5: Filtered data �⃗� (𝑐𝑎𝑙𝑐), M = 100. 

FIG. 3: Seismic data series used to test the filter algorithm. 



relatively small M. The higher the dimension, the better result we get in terms of preserving the large 
peaks. 

In order to avoid the disappearing of large peaks, we have cut out each peak from the chunk whose 
amplitude was larger than a given value and positioned the peaks into the middle of a window. Then 
we applied the filter on these shorter windows always with a peak in the middle. In each of the follow-
ing four figures such a case is presented with one peak in the middle and two small peaks on each side. 
If two chunks happen to lie close to each other, we can reduce the window size so that there is only 
one large peak in each window. Of course, sometimes there will be cases when we cannot avoid hav-
ing at least one large side peak really close to the middle peak. For those we can try to set the middle 
point in between the peaks.  

 
 

 
 
 
 
 
From the plots above we can see that the algorithm smooths the most in case of the sides of the 

window. However as we increase the dimension of our basis this effect reduces. We can also observe 
that near the big middle peak the high frequency oscillation gets slightly bigger instead of getting 
smoother. This effect increases with increasing dimension. Several other results confirm these conclu-
sions. Since the results show that the smoothing occurs mainly at the sides of the window they will be-
come dependent on the cutting. After the filtering we have reinserted the peaks into our original unfil-
tered data. An example is shown in Fig. 12. 

 
 

FIG. 10: Filtered data �⃗� (𝑐𝑎𝑙𝑐), M = 120. FIG. 11: Filtered data �⃗� (𝑐𝑎𝑙𝑐), M = 140. 

FIG. 8: Noisy data �⃗� (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑). 
 

FIG. 9: Filtered data �⃗� (𝑐𝑎𝑙𝑐), M = 100. 
 



 
 
 
 
The result of the filtering is the most visible in between the peaks where the signal has become 

smoother thanks to that these were the sides of the windows that we had cut out. 
For the reason that in this way the result will largely depend on the cuttings and the type of the data 

the testing of the second method described by the authors in (Dobróka et al. 2017) is required where 
more promising results are expected. 
 

4 SUMMARY AND OUTLOOK 

 
We reviewed a novel noise-filtered Fourier transform method that has until now only been tested on 

synthetic data. By developing a code that implements this transform, we analyzed real-world data, 
namely the MGGL seismic data. From this analysis it became clear that much care needs to be taken 
when implementing such an approach. By using this approach, we could filter out noise around a few 
peaks, however, overall the data did not change much. Nevertheless, one could hope that using even 
more advanced methods (such as the the second method of Ref. (Dobróka et al. 2017)) filtered Fourier 
transforms could become useful tool also in practice, which would, for instance, even allow for a more 
precise determination of the power spectral density plots. 
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